lunes, 18 de abril de 2011

PARTES DE LA TIERRA

El agua que conforma la hidrosfera se reparte entre varios compartimentos que en orden de mayor a menor volumen son:

Los océanos, que cubren dos tercios de la superficie terrestre con una profundidad típica de 3000 a 5000 metros.
Los glaciares que cubren parte de la superficie continental. Sobre todo los dos casquetes glaciares de Groenlandia y la Antártida, pero también glaciares de montaña y volcán, de menor extensión y espesor, en todas las latitudes.

La escorrentía superficial, un sistema muy dinámico formado por ríos y lagos.
El agua subterránea, que se encuentra embebida en rocas porosas de manera más o menos universal.

En la atmósfera en forma de nubes.

En la
biosfera, formando parte de plantas, animales y seres humanos.
La presencia del agua en la superficie terrestre es el resultado de la desgasificación del manto, que está compuesto por rocas que contienen en disolución sólida cierta cantidad de sustancias volátiles, de las que el agua es la más importante. El agua del manto se escapa a través de procesos volcánicos e hidrotermales. El manto recupera gracias a la subducción una parte del agua que pierde a través del vulcanismo.

La circulación del agua alrededor, sobre, y a través de la Tierra recibe el nombre de ciclo del agua, un proceso clave de la hidrosfera.

Archivo:Ciclo-del-agua.jpg


Composición

La hidrosfera incluye los océanos, mares, ríos, lagos, agua subterránea, el hielo y la nieve. Los océanos cubren aproximadamente dos terceras partes de la superficie terrestre, con una profundidad promedio de 3,5 km, lo que representa el 97% del total de la tercera parte del agua del planeta. En ellos se han encontrado al menos 77 elementos, siendo con mucho los más importantes el sodio y el cloro, que junto con el magnesio y el bromo, son de los pocos que se explotan comercialmente a partir del agua de mar. En la actualidad, se supone que prácticamente todos los elementos están presentes en los océanos.

El agua del planeta

El contenido de agua del planeta se estima en 1.300 trillones de litros. La mayor parte, un 97,23 %, la almacenan los océanos y los casquetes polares un 2,15 %; los acuíferos, la verdadera reserva para el hombre, un 0,61 %. Los lagos encierran el 0,009 %, mientras que la cifra desciende en los mares interiores a un 0,008 %. La humedad del suelo acumula el 0,005 % la atmósfera el 0,001 % y los ríos tan sólo 0,0001 % del total. Esta cantidad ha estado circulando siempre por la Tierra, originando y conservando la vida en ella. Disponemos actualmente de la misma cantidad de la que disfrutaban los dinosaurios hace 65 millones de años.
 

Litosfera

La litosfera está fragmentada en una serie de placas tectónicas o litosféricas, en cuyos bordes se concentran los fenómenos geológicos endógenos, como el magmatismo (incluido el vulcanismo), la sismicidad o la orogénesis. Las placas pueden ser oceánicas o mixtas, cubiertas en parte por corteza de tipo continental.

Subduccion entre placas litosfericas

Archivo:Oceanic-continental convergence Fig21oceancont spanish.svg


Interpretación

La distinción u oposición litosfera/astenósfera se basa en las propiedades reológicas, de carácter físico, a diferencia de la distinción corteza/manto, que se basa en la composición química. Mientras el límite corteza/manto, la discontinuidad de Mohorovicic, es en casi todas las partes una interfase nítida que separa rocas de diferente composición química, el límite litosfera/astenósfera corresponde a una transición de fase relacionada con ciertos valores críticos de presión y temperatura que se alcanza a una profundidad que varía con el carácter de los materiales que están encima. Así, la transición es más profunda bajo los materiales relativamente poco densos de los continentes que bajo los más densos de la Litosfera oceánica. La astenósfera (del griego ἀσθενός, astenos, sin resistencia) es la zona del manto que subyace a la litosfera, de la que se distingue por un comportamiento mucho más plástico.

Definiciones prácticas

Litosfera térmica. Bajo este concepto la litosfera constituye la capa límite superior fría de la convección del manto. En otras palabras la litosfera se diferencia térmicamente de la astenósfera por ser conductiva (y no convectiva) y por poseer un gradiente geotérmico elevado. Algunos autores proponen que el límite inferior de la litosfera se encuentra en la isoterma 600 °C, debido a que a partir de esta temperatura el olivino comienza a ser dúctil (o plástico).

Litosfera sísmica. La base de la litosfera se caracteriza por una reducción en la velocidad de propagación de las ondas S y una elevada atenuación de las ondas P. Esta definición tiene la ventaja que es fácilmente detectable a través de estudios sismológicos.

Litosfera elástica. Desde el punto de vista de la reología, la litosfera es la capa elástica que flota sobre la astenósfera. Gracias al principio de isostasia regional o flexión litosférica, es posible calcular el espesor elástico de la litosfera a partir de su curvamiento bajo cargas, la glaciación y desglaciación (midiendo el rebote posglacial) o la erosión de los continentes.


Atmósfera
La altura de la atmósfera de la Tierra es de más de 100 km, aunque más de la mitad de su masa se concentra en los seis primeros km y el 75% en los primeros 11 km de altura desde la superficie planetaria. La masa de la atmósfera es de 5,1 x 1018 kg.

Está compuesta por nitrógeno (78,1%) y oxígeno (20,94%), con pequeñas cantidades de argón (0,93%), dióxido de carbono (variable, pero alrededor de 0,035%), vapor de agua, neón (0,00182%), helio (0,000524%), kriptón (0,000114%), hidrógeno (0,00005%), ozono (0,00116%), metano y CFC, entre otros.

La atmósfera terrestre protege la vida de la Tierra, absorbiendo en la capa de ozono parte de la radiación solar ultravioleta, y reduciendo las diferencias de temperatura entre el día y la noche, y actuando como escudo protector contra los meteoritos.

La atmósfera terrestre es la parte gaseosa de la Tierra, siendo por esto la capa más externa y menos densa del planeta. Está constituida por varios gases que varían en cantidad según la presión a diversas alturas. Esta mezcla de gases que forma la atmósfera recibe genéricamente el nombre de aire. El 75% de masa atmosférica se encuentra en los primeros 11 km de altura, desde la superficie del mar. Los principales elementos que la componen son el oxígeno (21%) y el nitrógeno (78%).

Archivo:Full moon partially obscured by atmosphere.jpg

La homosfera ocupa los 100 km inferiores y tiene una composición constante y uniforme.

oxígeno (20,946%)nitrógeno (78,084%)argón (0,934%)dióxido de carbono (0,046%)vapor de agua (aprox. 1%)neón (18,2 ppm)helio (5,24 ppm)kriptón (1,14 ppm)hidrógeno (0,5 ppm)ozono (11,6 ppm)
Heterosfera
La heterosfera se extiende desde los 100 km hasta el límite superior de la atmósfera (unos 10.000 km); está estratificada, es decir, formada por diversas capas con composición diferente.

100-400 km - capa de nitrógeno molecular
400-1.100 km - capa de oxígeno atómico
1.100-3.500 km - capa de helio
3.500-10.000 km - capa de hidrógeno

Variación de la presión con la altura
La variación con la altura de la presión atmosférica con el conocimiento que se tiene del magnetismo o de la densidad atmosférica es lo que se conoce como Ley barométrica.

Capas de la atmósfera terrestre y la temperatura

La temperatura de la atmósfera terrestre varía con la altitud. La relación entre la altitud y la temperatura es distinta dependiendo de la capa atmosférica considerada: troposfera, estratosfera, mesosfera y termosfera.

Las divisiones entre una capa y otra se denominan respectivamente tropopausa, estratopausa, mesopausa y termopausa.

Troposfera

Su espesor alcanza desde la superficie terrestre (tanto terrestre como acuática o marina) hasta una altitud variable entre los 6 km en las zonas polares y los 18 o 20 km en la zona intertropical, por las razones indicadas más adelante.

Su temperatura disminuye con la altitud. La troposfera es la capa inferior (más próxima a la superficie terrestre) de la atmósfera de la Tierra. A medida que se sube, disminuye la temperatura en la troposfera, salvo algunos casos de inversión térmica que siempre se deben a causas local o regionalmente determinadas.

La latitud del lugar determina el mayor o menor espesor de la troposfera, siendo mucho mayor en la zona intertropical por la fuerza centrífuga del movimiento de rotación terrestre y mucho menor en las zonas polares por la misma razón (achatamiento polar).

En la troposfera suceden los fenómenos que componen lo que llamamos tiempo meteorológico.
La capa inferior de la troposfera se denomina la capa geográfica, que es donde se producen la mayor proporción de fenómenos geográficos, tanto en el campo de la geografía física como en el campo de la geografía humana.

Estratosfera

Su nombre obedece a que está dispuesta en capas más o menos horizontales (o estratos) 9/18 - 50 km, la temperatura permanece constante para después aumentar con la altitud. La estratosfera es la segunda capa de la atmósfera de la Tierra. A medida que se sube, la temperatura en la estratosfera aumenta. Este aumento de la temperatura se debe a que los rayos ultravioleta transforman al oxígeno en ozono, proceso que involucra calor: al ionizarse el aire, se convierte en un buen conductor de la electricidad y, por ende, del calor. Es por ello que a cierta altura existe una relativa abundancia de ozono (ozonosfera) lo que implica también que la temperatura se eleve a unos 80° C o más. Sin embargo, esa temperatura no tiene prácticamente ningún significado, ya que se trata de una atmósfera muy enrarecida, muy tenue.

Ozonosfera

Se denomina capa de ozono, u ozonosfera, a la zona de la estratosfera terrestre que contiene una concentración relativamente alta de ozono. Esta capa, que se extiende aproximadamente de los 15 km a los 40 km de altitud, reúne el 90% del ozono presente en la atmósfera y absorbe del 97% al 99% de la radiación ultravioleta de alta frecuencia.

Mesosfera

Es la tercera capa de la atmósfera de la Tierra. Se extiende entre los 50 y 80 km de altura, contiene solo el 0.1% de la masa total del aire. Es la zona más fría de la atmósfera, pudiendo alcanzar los -80 °C. Es importante por la ionización y las reacciones químicas que ocurren en ella. La baja densidad del aire en la mesosfera determina la formación de turbulencias y ondas atmosféricas que actúan a escalas espaciales y temporales muy grandes.

Ionosfera

La termosfera o ionosfera: 69/90 - 600/800 km, la temperatura aumenta con la altitud. La termosfera es la cuarta capa de la atmósfera de la Tierra. Se encuentra arriba de la mesosfera. A esta altura, el aire es muy tenue y la temperatura cambia con la actividad solar. Si el sol está activo, las temperaturas en la termosfera pueden llegar a 1.500° C e incluso más altas. La termosfera de la Tierra también incluye la región llamada ionosfera. En ella se encuentra el 0.1% de los gases.

Exosfera

La última capa de la atmósfera de la Tierra es la exosfera (600/800 - 2.000/10.000 km). Esta es el área donde los átomos se escapan hacia el espacio.

Archivo:Atmosphere layers-es.svg


Fricción atmosférica

La atmósfera es un escudo protector contra los impactos de enorme energía que provocarían aún pequeños objetos espaciales al colisionar a altísima velocidad la superficie del planeta.

Sin atmósfera, la velocidad de colisión de estos objetos sería la suma de su propia velocidad inercial espacial (medida desde nuestro planeta) más la aceleración provocada por la gravitación terrestre.

La energía cinética de los meteoritos se transforma en calor por la fricción de los mismos en el aire y desde la superficie vemos un meteoro, meteorito o también estrella fugaz.

La fricción es la manifestación macroscópica de una transferencia de energía cinética, o su transformación en otro tipo de energía, por la que un cuerpo "pierde" movimiento cediéndoselo a otro ya sea transfiriéndole parte de su propio movimiento o transformándose en movimientos moleculares (calor, vibración sonora, etc.)

Extructura de la tierra


Estructura interna de la Tierra

El interior del planeta, como el de otros planetas terrestres (planetas cuyo volumen está ocupado principalmente de material rocoso), está dividido en capas. La Tierra tiene una corteza externa de silicatos solidificados, un manto viscoso, y un núcleo con otras dos capas, una externa semisólida, mucho más fluida que el manto y una interna sólida. Muchas de las rocas que hoy forman parte de la corteza se formaron hace menos de 100 millones (1×108) de años. Sin embargo, las formaciones minerales más antiguas conocidas tienen 4.400 millones (44×108) de años, lo que nos indica que, al menos, el planeta ha tenido una corteza sólida desde entonces.

Gran parte de nuestro conocimiento acerca del interior de la Tierra ha sido inferido de otras observaciones. Por ejemplo, la fuerza de la gravedad es una medida de la masa terrestre. Después de conocer el volumen del planeta, se puede calcular su densidad. El cálculo de la masa y volumen de las rocas de la superficie, y de las masas de agua, nos permiten estimar la densidad de la capa externa. La masa que no está en la atmósfera o en la corteza debe encontrarse en las capas internas.

Los fondos de las grandes cuencas oceánicas están formados por la corteza oceánica, con un espesor medio de 7 km; está compuesta rocas máficas (silicatos de hierro y magnesio) con una densidad media de 3,0 g/cm.

Vista esquemática del interior de la Tierra. 1: Corteza continental - 2: Corteza oceánica - 3: Manto superior - 4: Manto inferior - 5: Núcleo externo - 6: Núcleo interno - A: Discontinuidad de Mohorovičić - D:Discontinuidad de Repetti - B: Discontinuidad de Gutenberg - C: Discontinuidad de Lehmann.

Archivo:Slice earth.svg

Planetas del Sistema Solar a escala y ordenados con respecto a su distancia con el Sol. Los planetas son: 1: Mercurio, 2: Venus, 3: Tierra, 4: Marte, 5: Júpiter, 6: Saturno, 7: Urano, 8: Neptuno.

Archivo:Solar planets.jpg

Capas definidas por su composición

Corteza

La corteza terrestre es una capa comparativamente fina; su grosor oscila entre 3 km en las dorsales oceánicas y 70 km en las grandes cordilleras terrestres como los Andes y el Himalaya.

Dorsal oceánica

Las dorsales oceánicas son grandes elevaciones submarinas situadas en la parte central de los océanos de la Tierra. Tienen una altura media de 2000 m y presentan un surco central, llamado rift, por donde sale magma procedente de la astenosfera, que se deposita a ambos lados, creando nuevo suelo oceánico.

Estas formaciones están activas, el magma emerge continuamente desde la corteza oceánica, a través de las fisuras del fondo del océano, y forma nuevos volcanes y porciones de corteza. Debido a esto, las rocas son más jóvenes en el centro de la dorsal (cerca de donde está la fisura) que en la periferia. Por otro lado, la permanente renovación del suelo de los océanos por este continuo fluir de magma hace que esta clase de corteza sea, por lo general, considerablemente más joven que las cortezas continentales.

Formación de una dorsal.

Archivo:Dorsaloceanica.jpg

Velocidad de expansión del fondo oceánico

La velocidad de creación de nuevo material en el fondo del océano, conocida generalmente como velocidad de expansión, es pequeña y se mide en milímetros/año. Para una clasificación rápida, se subdividen las velocidades en:

Rápidas: más de 100 mm/año
Medianas: alrededor de 60 mm/año
Lentas: menos de 20 mm/año
El nuevo material formado en las dorsales mesoceánicas, al ir enfriándose y transformándose en roca, se alinean de acuerdo al campo magnético terrestre. Estudiando su orientación, se han podido determinar las variaciones que ha tenido el campo magnético a lo largo de la historia del planeta.

El proceso por el cual una fisura como el Gran Valle del Rift pasa a convertirse en una dorsal oceánica no es aun del todo entendido, aunque se cree que el área del Mar Rojo es un ejemplo, en el cual el Golfo de Suez, en el Norte, representaría las etapas más tempranas, el Norte del Mar Rojo una etapa intermedia y el Sur de este una etapa más avanzada de la formación.

Edad del fondo oceánico. En rojo el más joven, junto a las dorsales, por ejemplo en la centroatlántica. En azul el más antiguo, por ejemplo, junto a las costas norteafricana y norteamericana. La diferente extensión de los fondos de cada edad dan un claro indicio de la diferente velocidad de expansión en cada punto, que originó las zonas de fractura (fallas transformantes) claramente visibles como discontinuidades habitualmente perpendiculares a las dorsales.

Archivo:Earth seafloor crust age 1996.gif

Cordillera de los Andes

La cordillera de los Andes es una cadena de montañas de América del Sur comprendido entre los 11° de latitud N y los 56° de latitud S, que atraviesa Argentina, Bolivia, Chile, Colombia, Ecuador, Perú y parte de Venezuela. La altura media alcanza los 4 mil metros, con numerosos puntos que alcanzan y hasta superan los 6 mil metros. Es la cordillera más grande del continente americano y una de las más importantes del mundo. Constituye una enorme masa montañosa que discurre en dirección sur-norte, bordeando la costa del océano Pacífico, a lo largo de 7.500 km. En el extremo meridional esta cordillera muere en la isla de los Estados.

Se formó al final de la era Secundaria, a finales del Cretácico tardío, por el movimiento de subducción de la placa de Nazca debajo de la Placa Suramericana. Los movimientos sísmicos y la actividad volcánica posteriores han tenido más importancia en la configuración del relieve que los agentes erosivos externos. En la morfología actual se encuentran elevadas cordilleras, junto con extensos altiplanos y profundos valles longitudinales paralelos a los grandes ejes montañosos. Los valles transversales son escasos, salvo en los Andes argentinos-chilenos.

Mapa topografico de la coordillera de los andes

Archivo:Andes.png

Manto

El manto terrestre se extiende hasta una profundidad de 2.890 km, lo que le convierte en la capa más grande del planeta. La presión, en la parte inferior del manto, es de unos 140 GPa (1,4 M atm). El manto está compuesto por rocas silíceas, más ricas en hierro y magnesio que la corteza. Las grandes temperaturas hacen que los materiales silíceos sean lo suficientemente dúctiles como para fluir, aunque en escalas temporales muy grandes. La convección del manto es responsable, en la superficie, del movimiento de las placas tectónicas. Como el punto de fusión y la viscosidad de una sustancia dependen de la presión a la que esté sometida, la parte inferior del manto se mueve con mayor dificultad que el manto superior, aunque también los cambios químicos pueden tener importancia en este fenómeno. La viscosidad del manto varía entre 1021 y 1024 Pa·s. Como comparación, la viscosidad del agua es aproximadamente 10-3 Pa.s, lo que ilustra la lentitud con la que se mueve el manto.

Convección

La convección es una de las tres formas de transferencia de calor y se caracteriza porque se produce por intermedio de un fluido (aire, agua) que transporta el calor entre zonas con diferentes temperaturas. La convección se produce únicamente por medio de materiales fluidos. Estos, al calentarse, aumentan de volumen y, por lo tanto, su densidad disminuye y ascienden desplazando el fluido que se encuentra en la parte superior y que está a menor temperatura. Lo que se llama convección en sí, es el transporte de calor por medio de las corrientes ascendente y descendente del fluido.

La transferencia de calor implica el transporte de calor en un volumen y la mezcla de elementos macroscópicos de porciones calientes y frías de un gas o un líquido. Se incluye también el intercambio de energía entre una superficie sólida y un fluido o por medio de una bomba, un ventilador u otro dispositivo mecánico (convección mecánica, forzada o asistida).

Movimiento por convección.

Archivo:Convection.gif


La convección en la atmósfera

La convección en la atmósfera terrestre involucra la transferencia de enormes cantidades del calor absorbido por el agua. Forma nubes de gran desarrollo vertical (por ejemplo, cúmulos congestus y, sobre todo, cumulonimbos, que son los tipos de nubes que alcanzan mayor desarrollo vertical). Estas nubes son las típicas portadoras de tormentas eléctricas y de grandes chaparrones. Al alcanzar una altura muy grande (por ejemplo, unos 12 ó 14 km y enfriarse violentamente, pueden producir tormentas de granizo, ya que las gotas de lluvia se van congelando al ascender violentamente y luego se precipitan al suelo ya en estado sólido. Pueden tener forma de un hongo asimétrico de gran tamaño; y a veces se forma en este tipo de nubes una estela que semeja una especie de yunque (anvil's head, como se conoce en inglés).

Convección aire en un hornillo.

Archivo:Hobo stove convection 2.jpg

Placa tectónica

Una placa tectónica o placa litosférica es un fragmento de litosfera que se mueve como un bloque rígido sin presentar deformación interna sobre la astenósfera de la Tierra.

La tectónica de placas es la teoría que explica la estructura y dinámica de la superficie de la Tierra. Establece que la litosfera (la porción superior más fría y rígida de la Tierra) está fragmentada en una serie de placas que se desplazan sobre el manto terrestre. Esta teoría también describe el movimiento de las placas, sus direcciones e interacciones. La litosfera terrestre está dividida en placas grandes y en placas menores o microplacas. En los bordes de las placas se concentra actividad sísmica, volcánica y tectónica. Esto da lugar a la formación de grandes cadenas y cuencas.

La Tierra es el único planeta del Sistema Solar con placas tectónicas activas, aunque hay evidencias de que Marte, Venus y alguno de los satélites galileanos, como Europa, fueron tectónicamente activos en tiempos remotos.

Descubrimiento

Aunque la teoría de la tectónica de placas fue formalmente establecida en los años 1960 y en los 1970, en realidad esta es producto de más de dos siglos de observaciones geológicas y geofísicas. Por ejemplo, en el siglo XIX se observó que existieron numerosas cuencas sedimentarias en el pasado de la Tierra, con espesores estratigráficos de hasta diez veces los observados en el interior de los continentes, y que estas fueron deformadas posteriormente por procesos desconocidos originando cordilleras montañosas. A estas cuencas se les denominó geosinclinal y al proceso de deformación orogénesis. Otro descubrimiento del siglo XIX fue la documentación de una cadena montañosa o "dorsal" en medio del Océano Atlántico que observaciones posteriores mostraron que se extendía formando una red continua por todos los océanos.

Punto de fusión

El punto de fusión es la temperatura a la cual la materia pasa de estado sólido a estado líquido, es decir, se funde.

Al efecto de fundir un metal se le llama fusión (no podemos confundirlo con el punto de fusión). También se suele denominar fusión al efecto de licuar o derretir una sustancia sólida, congelada o pastosa, en líquida.

En la mayoría de las sustancias, el punto de fusión y de congelación, son iguales. Pero esto no siempre es así: por ejemplo, el Agar-agar se funde a 85 °C y se solidifica a partir de los 31 °C a 40 °C; este proceso se conoce como histéresis.

Puntos de fusión (en azul) y puntos de ebullición (en rosado) de los ocho primeros ácidos carboxilicos (°C).

Archivo:Carboxylic.Acids.Melting.&.Boiling.Points.jpg

Viscosidad

La viscosidad es la oposición de un fluido a las deformaciones tangenciales. Un fluido que no tiene viscosidad se llama fluido ideal. En realidad todos los fluidos conocidos presentan algo de viscosidad, siendo el modelo de viscosidad nula una aproximación bastante buena para ciertas aplicaciones. La viscosidad sólo se manifiesta en líquidos en movimiento, ya que cuando el fluido está en reposo, la superficie permanece plana.

En la animación, el fluido de abajo es más viscoso que el de arriba.

Archivo:Viscosity.gif

Explicación de la viscosidad

Imaginemos un bloque sólido (no fluido) sometido a una fuerza tangencial (por ejemplo: una goma de borrar sobre la que se sitúa la palma de la mano que empuja en dirección paralela a la mesa.) En este caso (a), el material sólido opone una resistencia a la fuerza aplicada, pero se deforma (b), tanto más cuanto menor sea su rigidez.

Si imaginamos que la goma de borrar está formada por delgadas capas unas sobre otras, el resultado de la deformación es el desplazamiento relativo de unas capas respecto de las adyacentes, tal como muestra la figura (c).

Deformación de un sólido por la aplicación de una fuerza tangencial.
Archivo:Solido deformacion tangencial.svg

Núcleo

La densidad media de la Tierra es 5.515 kg/m3. Esta cifra lo convierte en el planeta más denso del sistema solar. Si consideramos que la densidad media de la corteza es aproximadamente 3.000 kg/m3, debemos asumir que el núcleo terrestre debe estar compuesto de materiales más densos. Los estudios sismológicos han aportado más evidencias sobre la densidad del núcleo. En sus primeras fases, hace unos 4.500 millones de años, los materiales más densos, derretidos, se habrían hundido hacia el núcleo en un proceso llamado diferenciación planetaria, mientras que otros menos densos habrían migrado hacia la corteza. Como resultado de este proceso, el núcleo está compuesto ampliamente de hierro (Fe)(80%), junto con níquel (Ni) y varios elementos más ligeros. Otros elementos más densos, como el plomo (Pb) o el uranio (U) son muy raros, o permanecieron en la superficie unidos a otros elementos más ligeros.

Hierro

El hierro o fierro (en muchos países hispanohablantes se prefiere esta segunda forma) es un elemento químico de número atómico 26 situado en el grupo 8, periodo 4 de la tabla periódica de los elementos. Su símbolo es Fe (del latín fĕrrum) y tiene una masa atómica de 55,6 u.

Este metal de transición es el cuarto elemento más abundante en la corteza terrestre, representando un 5% y, entre los metales, sólo el aluminio es más abundante. El núcleo de la Tierra está formado principalmente por hierro y níquel, generando al moverse un campo magnético. Ha sido históricamente muy importante, y un período de la historia recibe el nombre de Edad de Hierro.









 





No hay comentarios:

Publicar un comentario