jueves, 21 de abril de 2011

VOLCANES - TERREMOTOS - TSUNAMI

Un volcán (del dios mitológico Vulcano) es un conducto que pone en comunicación directa la parte superior de la corteza sólida con los niveles inferiores de la misma. Es también una estructura geológica por la cual emergen el magma (roca fundida) en forma de lava y gases del interior del planeta. El ascenso ocurre generalmente en episodios de actividad violenta denominados «erupciones», las cuales pueden variar en intensidad, duración y frecuencia; siendo desde conductos de corrientes de lava hasta explosiones extremadamente destructivas.

Generalmente adquieren una característica forma cónica que es formada por la presión del magma subterráneo así como de la acumulación de material de erupciones anteriores. Encima del volcán podemos encontrar su cráter o caldera.

Los volcanes se pueden encontrar en la Tierra así como en otros planetas y satélites, algunos de los cuales están formados de materiales que consideramos "fríos"; estos son los criovolcanes. Es decir, en ellos el hielo actúa como roca mientras la fría agua líquida interna actúa como el magma; esto ocurre -por ejemplo- en la fría luna de Júpiter llamada Europa.

Fuente de lava de 10 metros de altura en un volcán de Hawái, (Estados Unidos).

Archivo:Pahoeoe fountain original.jpg

Volcan tungurahua Ecuador

Archivo:Volcán Tungurahua.jpg


El magma es una mezcla de alta temperatura compuesta de roca fundida (principalmente silicatos) y gases. Se halla en el interior de la tierra que tiende a ascender y a salir por las grietas de la corteza formando un volcán. El magma ascendente que, desde su generación hasta antes de su solidificación, extrude en la superficie, recibe el nombre de lava.

Archivo:Aa large.jpg

Gases

Se denomina gas al estado de agregación de la materia en el que las sustancias no tienen forma ni volumen propio, adoptando el de los recipientes que las contienen. Las moléculas que constituyen un gas casi no son atraídas unas por otras, por lo que se mueven en el vacío a gran velocidad y muy separadas unas de otras, explicando así las propiedades:

Índice de Explosividad Volcánica o IEV (originalmente en inglés, Volcanic Explosivity Index, VEI): Escala de 8 grados, con la que los vulcanólogos miden la magnitud de una erupción volcánica. El índice es el producto de la combinación de varios factores mensurables y/o apreciables de la actividad volcánica. Por ejemplo, se considera el volumen total de los productos expulsados por el volcán (lava, piroclastos, ceniza volcánica), altura alcanzada por la nube eruptiva, duración de erupción, inyección troposférica y estratosférica de productos expulsados, y algunos otros factores sintomáticos del nivel de explosividad.

La escala

Los científicos indican la magnitud de las erupciones volcánicas con el IEV. Registra la cantidad de material volcánico expulsada, la altitud que alcanza la erupción, y cuánto tiempo dura. La escala va de 0 a 8. Un aumento de 1 indica una erupción 10 veces más potente.

Supervolcán es un término que se refiere a un tipo de volcán que produce las mayores y más voluminosas erupciones de la Tierra. La explosividad real de estas erupciones varía, si bien el volumen de magma erupcionado es suficiente en cada caso para alterar radicalmente el paisaje circundante, e incluso para alterar el clima global durante años, con un efecto cataclísmico para la vida, similar al que pudiera tener un invierno nuclear.

Volcanes extraterrestres

La Tierra no es el único planeta del Sistema Solar que tiene actividad volcánica. Venus tiene un intenso vulcanismo con unos 500.000 volcanes. Marte tiene la cumbre más alta del sistema solar: el Monte Olimpo, un volcán dado por apagado con una base de unos 600 km y más de 27 km de altura. No obstante, este planeta parece ya no tener actividad volcánica apreciable.

Nuestra Luna está cubierta de inmensos campos de basalto, lo que sugiere que tuvo una corta pero considerable actividad volcánica que hoy muy probablemente está extinta.

Debido a las bajas temperaturas del espacio, algunos volcanes de nuestro sistema solar están formados de hielo que actúa como roca, mientras su agua líquida interna actúa como la magma; esto ocurre -por ejemplo- en la fría luna de Júpiter llamada Europa. Estos reciben el nombre de criovolcáns, de los cuales hay también en Encélado. La Voyager 2 descubrió en agosto de 1989, sobre Tritón, rastros de criovulcanismo y géiseres. La búsqueda de vida extraterrestre se ha interesado en buscar rastros de vida en sistemas criovolcánicos donde hay agua líquida y por ende, una fuente de radiación en calor considerable; estos son elementos esenciales para la vida.

Monte Olimpo, el volcán más grande del Sistema Solar situado en el planeta Marte.

Archivo:Olympus Mons.jpeg

 Actividad volcánica

La salida de productos gaseosos, líquidos y sólidos lanzados por las explosiones constituye los paroxismos o erupciones del volcán.

Los volcanes se pueden clasificar de diferentes maneras teniendo en consideración factores diversos. Con respecto a la frecuencia de su actividad eruptiva los volcanes pueden ser:

Volcanes activos

Los volcanes activos son aquellos que entran en actividad eruptiva. La mayoría de los volcanes ocasionalmente entran en actividad y permanecen en reposo la mayor parte del tiempo. Para bienestar de la humanidad solamente unos pocos están en erupción continua. El período de actividad eruptiva puede durar desde una hora hasta varios años. Este ha sido el caso del volcán de Pacaya, o el Irazú. Los intervalos de calma entre erupciones pueden durar meses, décadas y en ocasiones hasta siglos. Sin embargo, no se ha descubierto aún un método seguro para predecir las erupciones.

Volcanes durmientes

Los volcanes durmientes son aquellos que mantienen ciertos signos de actividad como lo son las aguas termales y han entrado en actividad esporádicamente. Dentro de esta categoría suelen incluirse las fumarolas y los volcanes con largos períodos en inactividad entre erupción. Un volcán se considera activo si su última erupción fue antes de 25.000 años.

Volcanes extintos

Los volcanes extintos son aquellos que estuvieron en actividad durante períodos muy lejanos y no muestran indicios de que puedan reactivarse en el futuro. Son muy frecuentes, aunque la inactividad que las describe puede reactivarse nuevamente en muy raras ocasiones, estos volcanes generalmente han dejado de mostrar actividad desde hace muchos siglos antes de ser considerados extintos.

Montañas de origen volcánico en Gran Canaria.

Archivo:BergweltGranCanarias2.jpg

Es difícil distinguir entre un volcán extinguido y un volcán inactivo latente, si se tiene en cuenta que debemos considerar los largos períodos de tiempo geológico en que tienen lugar estos fenómenos. Por lo tanto, un volcán sólo puede ser considerado como probablemente extinto si su última erupción se remonta cientos de años atrás en el pasado. Por ejemplo, el sistema volcánico de la isla de Gran Canaria, que data de hace unos 15 millones de años, lleva suspendido unos 4 millones de años. Así que es muy posible que ciertos volcanes aparentemente extintos, puedan volver a erupcionar de nuevo.

Tipos de erupciones volcánicas

La temperatura, composición, viscosidad y elementos disueltos de los magmas son los factores fundamentales de los cuales depende el tipo de explosividad y la cantidad de productos volátiles que acompañan a la erupción volcánica.

Hawaiano o efusivo

Sus lavas son bastante fluidas, sin que tengan lugar desprendimientos gaseosos explosivos; estas lavas se desbordan cuando rebasan el cráter y se deslizan con facilidad por la ladera del volcán, formando verdaderas corrientes que recorren grandes distancias. Por esta razón, los volcanes de tipo hawaiano son de pendiente suave. Algunas partículas de lava, al ser arrastradas por el viento, forman hilos cristalinos que los nativos llaman cabellos de la diosa Pelé (diosa del fuego). Son bastante comunes en todo el planeta.

Estromboliano o mixto

Este tipo de volcán recibe el nombre del Stromboli, volcán de las islas Lípari (mar Tirreno), al Norte de Sicilia. Se originan cuando hay alternancia de los materiales en erupción, formándose un cono estratificado en capas de lavas fluidas y materiales sólidos. La lava es fluida, desprendiendo gases abundantes y violentos, con proyecciones de escorias, bombas y lapilli. Debido a que los gases pueden desprenderse con facilidad, no se producen pulverizaciones o cenizas. Cuando la lava rebosa por los bordes del cráter, desciende por sus laderas y barrancos, pero no alcanza tanta extensión como en las erupciones de tipo hawaiano.

Erupción del Stromboli (Italia) en 1980.

Archivo:Stromboli Eruption.jpg

Vulcaniano

Del nombre del volcán Vulcano en las islas Lípari. Se desprenden grandes cantidades de gases de un magma poco fluido, que se consolida con rapidez; por ello las explosiones son muy fuertes y pulverizan la lava, produciendo mucha ceniza, lanzada al aire acompañadas de otros materiales fragmentarios. Cuando la lava sale al exterior se solidifica rápidamente, pero los gases que se desprenden rompen y resquebrajan su superficie, que por ello resulta áspera y muy irregular, formándose lavas de tipo Aa. Los conos de estos volcanes son de pendiente muy inclinada.

Pliniano o vesubiano

Nombrado así en honor a Plinio el Joven, difiere del vulcaniano en que la presión de los gases es muy fuerte y produce explosiones muy violentas. Forma nubes ardientes que, al enfriarse, producen precipitaciones de cenizas, que pueden llegar a sepultar ciudades, como ocurrió con Pompeya y Herculano y el volcán Vesubio.

Se caracteriza por alternar erupciones de piroclastos con erupciones de coladas lávicas, dando lugar a una superposición en estratos que hace que este tipo de volcanes alcance grandes dimensiones. Otros volcanes de tipo pliniano son el Teide, el Popocatépetl y el Fujiyama.

Erupciones submarinas

En el fondo oceánico se producen erupciones volcánicas cuyas lavas, si llegan a la superficie, pueden formar islas volcánicas.Las erupciones suelen ser de corta duración en la mayoría de los casos, debido al equilibrio isostático de las lavas al enfriarse, entrando en contacto con el agua, y por la erosión marina. Algunas islas actuales como las Cícladas (Grecia), tienen este origen.

Avalanchas de origen volcánico (Lahares)

Hay volcanes que ocasionan gran número de víctimas, debido a que sus grandes cráteres están durante el periodo de reposo convertidos en lagos o cubiertos de nieve. Al recobrar su actividad, el agua mezclada con cenizas y otros restos, es lanzada formando torrentes y avalanchas de barro, que cuentan con una enorme capacidad destructiva. Un ejemplo fue la erupción del Nevado de Ruiz (Colombia) el 13 de noviembre de 1985. El Nevado del Ruiz es un volcán explosivo, en el que la cumbre del cráter (5.000 msnm) estaba recubierta por un casquete de hielo; al ascender la lava se recalentaron las capas de hielo, formando unas coladas de barro que invadieron el valle del río Lagunilla y sepultaron la ciudad de Armero, con 24.000 muertos y decenas de miles de heridos.

Armero después de la tragedia.

Archivo:Armerotragedy2.png

Erupciones fisurales

Se originan en una larga dislocación de la corteza terrestre, que puede ser desde apenas unos metros hasta varios km. La lava que fluye a lo largo de la rotura es fluida y recorre grandes extensiones formando amplias mesetas, con 1 ó más km de espesor y miles de km². Un ejemplo de vulcanismo fisural es la meseta del Decán (India).

Flujo piroclástico

Cuando las erupciones de un volcán llegan acompañadas de gases calientes y cenizas se produce lo que se conoce como flujo piroclástico o «nube ardiente». También conocida como avalancha incandescente, el flujo piroclástico se desplaza pendiente abajo a velocidades cercanas a los 200 km/h. La sección basal de estas nubes contienen gases calientes y partículas que flotan en ellos. De esta forma, las nubes transportan fragmentos de rocas que –gracias al rebote de los gases calientes en expansión– se depositan a lo largo de más de 100 km desde su punto de origen.

En 1902 una nube ardiente de un pequeño volcán llamado Monte Pelée en la isla caribeña de Martinica destruyó la ciudad portuaria de San Pedro. La destrucción fue tan devastadora que murió casi toda la población (unos 28.000 habitantes). A diferencia de Pompeya, que quedó enterrada en un manto de cenizas en un plazo de tres días y las casas quedaron intactas (salvo los techos por el peso de las cenizas), la ciudad de San Pedro fue destruida sólo en minutos y la energía liberada fue tal que los árboles fueron arrancados de raíz, las paredes de las casas desaparecieron y las monturas de los cañones se desintegraron. La erupción del Monte Pelée muestra cuan distintos pueden ser dos volcanes del mismo tipo.

Flujo piroclástico expulsado por el volcán Mayon en Filipinas.

Archivo:Pyroclastic flows at Mayon Volcano.jpg


Terremotos

Un terremoto, también llamado seísmo o sismo o temblor de tierra[1] es una sacudida del terreno que se produce debido al choque de las placas tectónicas y a la liberación de energía en el curso de una reorganización brusca de materiales de la corteza terrestre al superar el estado de equilibrio mecánico. Los más importantes y frecuentes se producen cuando se libera energía potencial elástica acumulada en la deformación gradual de las rocas contiguas al plano de una falla activa, pero también pueden ocurrir por otras causas, por ejemplo en torno a procesos volcánicos o por hundimiento de cavidades cársticas.

Vista aérea de Puerto Príncipe. La ciudad quedó destruida tras el terremoto de Haití en 2010.

Archivo:Downtown Port au Prince after earthquake.jpg

Origen

El origen de los terremotos se encuentra en la acumulación de energía que se produce cuando los materiales del interior de la Tierra se desplazan, buscando el equilibrio, desde situaciones inestables que son consecuencia de las actividades volcánicas y tectónicas, que se producen principalmente en los bordes de la placa.

Aunque las actividades tectónicas y volcánicas son las principales causas por las que se generan los terremotos, existen otros muchos factores que pueden originarlos:

Acumulación de sedimentación como: Desprendimientos de rocas en las laderas de las montañas, hundimiento de cavernas.

Modificación del régimen de precipitación, modificando cuencas o cauces de ríos o estuarios)

Variaciones bruscas en la presión atmosférica por ciclones

Estos mecanismos generan eventos de baja magnitud que generalmente caen en el rango de microsismos, temblores que sólo pueden ser detectados por sismógrafos.

Localizaciones

Los terremotos tectónicos se suelen producir en zonas donde la concentración de fuerzas generadas por los límites de las placas tectónicas dan lugar a movimientos de reajuste en el interior y en la superficie de la Tierra. Es por esto que los sismos o seísmos de origen tectónico están íntimamente asociados con la formación de fallas geológicas. Suelen producirse al final de un ciclo denominado ciclo sísmico, que es el período durante el cual se acumula deformación en el interior de la Tierra que más tarde se liberará repentinamente. Dicha liberación se corresponde con el terremoto, tras el cual la deformación comienza a acumularse nuevamente.

El punto interior de la Tierra donde se produce el sismo se denomina foco sísmico o hipocentro, y el punto de la superficie que se halla directamente en la vertical del hipocentro —y que, por tanto, es el primer afectado por la sacudida— recibe el nombre de epicentro.

En un terremoto se distinguen:

Hipocentro, zona interior profunda, donde se produce el terremoto.

Archivo:Epicenter Hypocenter.png

Epicentro, área de la superficie perpendicular al hipocentro, donde repercuten con mayor intensidad las ondas sísmicas.

El epicentro es usualmente el lugar con mayor daño. Sin embargo, en el caso de grandes terremotos, la longitud de la ruptura de la falla puede ser muy grande, por lo que el mayor daño puede localizarse no en el epicentro, sino en cualquier otro punto de la zona de ruptura. Por ejemplo, en el terremoto de Denali de 2002, que alcanzó una magnitud de 7.9 grados, el epicentro se encontraba en el extremo oeste de la zona de ruptura, pero el mayor daño ocurrió a unos 330 km del extremo este de la zona de ruptura.

Propagación

El movimiento sísmico se propaga mediante ondas elásticas (similares al sonido), a partir del hipocentro. Las ondas sísmicas se presentan en tres tipos principales:

Ondas longitudinales, primarias o P: tipo de ondas de cuerpo que se propagan a una velocidad de entre 8 y 13 km/s y en el mismo sentido que la vibración de las partículas. Circulan por el interior de la Tierra, atravesando tanto líquidos como sólidos. Son las primeras que registran los aparatos de medida o sismógrafos, de ahí su nombre "P"

Ondas transversales, secundarias o S: son ondas de cuerpo más lentas que las anteriores (entre 4 y 8 km/s) y se propagan perpendicularmente en el sentido de vibración de las partículas. Atraviesan únicamente los sólidos y se registran en segundo lugar en los aparatos de medida.

Ondas superficiales: son las más lentas de todas (3,5 km/s) y son producto de la interacción entre las ondas P y S a lo largo de la superficie de la Tierra. Son las que producen más daños. Se propagan a partir del epicentro y son similares a las ondas que se forman sobre la superficie del mar. Este tipo de ondas son las que se registran en último lugar en los sismógrafos.

Daños producidos por el terremoto del año 1960 en Valdivia, Chile. Es el sismo más fuerte registrado en la historia de la humanidad, con 9,5 grados en la escala de Richter.

Archivo:Valdivia after earthquake, 1960.jpg

Terremotos inducidos

Hoy en día se tiene la certeza de que si se inyectan en el subsuelo, ya sea como consecuencia de la eliminación de desechos en solución o en suspensión, o por la extracción de hidrocarburos, se provoca, con un brusco aumento de la presión intersticial, una intensificación de la actividad sísmica en las regiones ya sometidas a fuertes tensiones. Pronto se deberían controlar mejor estos sismos inducidos y, en consecuencia, preverlos, tal vez, pequeños sismos inducidos pudieran evitar el desencadenamiento de un terremoto de mayor magnitud.

Escalas de Magnitudes


La escala magnitud de onda superficial (Ms) es una de las escalas de magnitud sísmica usadas en sismología para describir el tamaño de un sismo. Está basada en mediciones de las ondas superficiales de Rayleigh, que viajan principalmente a lo largo de las capas superiores de la tierra. Es usada actualmente en la República Popular China como un estándar nacional (GB 17740-1999) para categorizar terremotos.


La magnitud de las ondas de cuerpo (Mb) es una forma de determinar el tamaño de un terremoto usando la amplitud de la onda de presión inicial para calcular la magnitud. La onda P es un tipo de onda de cuerpo que es capaz de viajar a través de la tierra a una velocidad de alrededor de 5 a 8 km/s, y es la primera onda de un terremoto que llega a un sismómetro. Debido a esto, el cálculo de la magnitud de las ondas de cuerpo puede ser el método más rápido para la determinación del tamaño de un terremoto que esté a una gran distancia del sismómetro.

La Escala sismológica de Richter, también conocida como escala de magnitud local (ML), es una escala logarítmica

La escala sismológica de Richter, también conocida como escala de magnitud local (ML), es una escala logarítmica arbitraria que asigna un número para cuantificar el efecto de un terremoto, denominada así en honor del sismólogo estadounidense Charles Richter (1900-1985).

Como se muestra en esta reproducción de un sismograma, las ondas P se registran antes que las ondas S: el tiempo transcurrido entre ambos instantes es Δt. Este valor y el de la amplitud máxima (A) de las ondas S, le permitieron a Richter calcular la magnitud de un terremoto.

Archivo:Ondas sísmicas s p.svg

arbitraria que asigna un número para cuantificar el efecto de un terremoto.

La Escala sismológica de magnitud de momento es una escala logarítmica usada para medir y comparar seísmos. Está basada en la medición de la energía total que se libera en un terremoto. Fue introducida en 1979 por Thomas C. Hanks y Hiroo Kanamori como la sucesora de la escala de Richter.

La Escala sismológica de magnitud de momento es una escala logarítmica usada para medir y comparar seísmos. Está basada en la medición de la energía total que se libera en un terremoto. Fue introducida en 1979 por Thomas C. Hanks y Hiroo Kanamori como la sucesora de la escala de Richter.

Una ventaja de la escala de magnitud de momento es que no se satura cerca de valores altos.[1] Es decir, a diferencia de otras escalas, ésta no tiene un valor por encima del cual todos los terremotos más grandes reflejen magnitudes muy similares.

Daños producidos por el terremoto de 1906 en San Francisco, Estados Unidos.

Archivo:Sanfranciscoearthquake1906.jpg

Escalas de Intensidades

La Escala sismológica de Mercalli es una escala de 12 puntos desarrollada para evaluar la intensidad de los terremotos a través de los efectos y daños causados a distintas estructuras. Debe su nombre al físico italiano Giuseppe Mercalli.

La escala de Mercalli se basó en la simple escala de diez grados formulada por Michele Stefano Conte de Rossi y François-Alphonse Forel. La escala de Rossi-Forel era una de las primeras escalas sísmicas para medir la intensidad de eventos sísmicos. Fue revisada por el vulcanólogo italiano Giuseppe Mercalli en 1884 y 1906.

En 1902 el físico italiano Adolfo Cancani amplió la escala de Mercalli de diez a doce grados. Más tarde la escala fue completamente reformulada por el geofísico alemán August Heinrich Sieberg y se conocía como la escala de Mercalli-Cancani-Sieberg (MCS). La escala de Mercalli-Cancani-Sieberg fue posteriormente modificada por Harry O. Wood y Frank Neumann en 1931 como la escala de Mercalli-Wood-Neumann (MWN). Finalmente fue mejorada por Charles Richter, también conocido como el autor de otra escala sismológica, la escala de Richter, que mide la magnitud de la energía liberada durante un sismo.

Tsunami

Tsunami es una palabra japonesa (tsu (津): ‘puerto’ o ‘bahía’, y nami (波): ‘ola’; literalmente significa ‘ola de puerto’) que se refiere a maremoto. Se comenzó a utilizar por los medios de comunicación masiva cuando los corresponsales de habla inglesa emitían sus reportajes acerca del maremoto que precisamente ocurrió en el Asia (el 25 de diciembre de 2004 en el océano Índico). La razón es que en inglés no existe una palabra para referirse a este fenómeno por lo cual los angloparlantes adoptaron Tsunami como parte de su lenguaje, pero, como se verá en las citas históricas sobre maremotos que aparecen más adelante, la denominación correcta en español no es tsunami.

Maremoto es un evento complejo que involucra un grupo de olas de gran energía y de tamaño variable que se producen cuando algún fenómeno extraordinario desplaza verticalmente una gran masa de agua. Este tipo de olas remueven una cantidad de agua muy superior a las olas superficiales producidas por el viento. Se calcula que el 90% de estos fenómenos son provocados por terremotos, en cuyo caso reciben el nombre más correcto y preciso de «maremotos tectónicos».

La energía de un maremoto depende de su altura (amplitud de la onda) y de su velocidad. La energía total descargada sobre una zona costera también dependerá de la cantidad de picos que lleve el tren de ondas (en el maremoto del océano Índico de 2004 hubo 7 picos enormes,gigantes y muy anchos). Es frecuente que un tsunami que viaja grandes distancias, disminuya la altura de sus olas, pero mantenga su velocidad, siendo una masa de agua de poca altura que arrasa con todo a su paso hacia el interior.

Esquema de un tsunami.

Archivo:Esquema de un tsunami.png

Animación de un tsunami.

Archivo:Shallow water wave.gif

Términos

Antes, el término tsunami también sirvió para referirse a las olas producidas por huracanes y temporales que, como los maremotos, podían entrar tierra adentro, pero éstas no dejaban de ser olas superficiales producidas por el viento, aunque se trata aquí de un viento excepcionalmente potente.

Ciclón tropical

Ciclón tropical es un término meteorológico usado para referirse a un sistema de tormentas caracterizado por una circulación cerrada alrededor de un centro de baja presión y que produce fuertes vientos y abundante lluvia. Los ciclones tropicales extraen su energía de la condensación de aire húmedo, produciendo fuertes vientos. Se distinguen de otras tormentas ciclónicas, como las bajas polares, por el mecanismo de calor que las alimenta, que las convierte en sistemas tormentosos de "núcleo cálido". Dependiendo de su fuerza y localización, un ciclón tropical puede llamarse depresión tropical, tormenta tropical, huracán, tifón o simplemente ciclón.

Ciclón Catarina, un infrecuente ciclón tropical del Atlántico Sur visto desde la Estación Espacial Internacional el 26 de marzo de 2004, que llegó a tener viento de hasta 240 km/h.

Archivo:Cyclone Catarina from the ISS on March 26 2004.JPG

Temporal (meteorología)

En meteorología, un temporal es un viento fuerte de grado superior al octavo de la escala de Beaufort. Puede ir acompañado de arena en suspensión (simún), de nieve (ventisca), o de lluvias.

Temporal sobre el mar Cantábrico.

Archivo:Isla de Mouro.jpg

Tampoco se deben confundir con la ola producida por la marea conocida como macareo. Éste es un fenómeno regular y mucho más lento, aunque en algunos lugares estrechos y de fuerte desnivel pueden generarse fuertes corrientes.

La mayoría de los maremotos son originados por terremotos de gran magnitud bajo la superficie acuática. Para que se origine un maremoto el fondo marino debe ser movido abruptamente en sentido vertical, de modo que una gran masa de agua del océano es impulsada fuera de su equilibrio normal. Cuando esta masa de agua trata de recuperar su equilibrio genera olas. El tamaño del tsunami estará determinado por la magnitud de la deformación vertical del fondo marino entre otros parámetros como la profundidad del lecho marino. No todos los terremotos bajo la superficie acuática generan maremotos, sino sólo aquellos de magnitud considerable con hipocentro en el punto de profundidad adecuado.

Física de los maremotos tectónicos

Los maremotos son destructivos a partir de sismos de magnitud 7,5 en la escala de Richter y son realmente destructivos a partir de 8,3.

A las profundidades típicas de 4-5 km las olas viajarán a velocidades en torno a los 600 kilómetros por hora o más. Su amplitud superficial o altura de la cresta H puede ser pequeña, pero la masa de agua que agitan es enorme, y por ello su velocidad es tan grande; y no sólo eso, pues la distancia entre picos también lo es. Es habitual que la longitud de onda de la cadena de maremotos sea de 100 km, 200 km o más.

El intervalo entre cresta y cresta (período de la onda) puede durar desde menos de diez minutos hasta media hora o más. Cuando la ola entra en la plataforma continental, la disminución drástica de la profundidad hace que su velocidad disminuya y empiece a aumentar su altura. Al llegar a la costa, la velocidad habrá decrecido hasta unos 50 kilómetros por hora, mientras que la altura ya será de unos 3 a 30 m, dependiendo del tipo de relieve que se encuentre. La distancia entre crestas (longitud de onda L) también se estrechará cerca de la costa.

Maremoto de Sumatra, en 2004.

Archivo:Terremoto Sumatra 2004.gif


Crust tsunamis (maremoto de la corteza terrestre)

En español, «maremoto de la corteza (terrestre)», hace referencia a las consecuencias que tendría el impacto de un meteorito gigantesco, del orden de centenares de kilómetros contra la superficie de la Tierra.

Por semejanza a los tsunamis convencionales en los que el agua del océano asciende formando una enorme ola, en un crust tsunami se elevaría la corteza terrestre, despegándose del manto.

Archivo:Earth-crust-cutaway-spanish.svg


Otros tipos de maremotos

Existen otros mecanismos generadores de maremotos menos corrientes que también pueden producirse por erupciones volcánicas, deslizamientos de tierra, meteoritos o explosiones submarinas. Estos fenómenos pueden producir olas enormes, mucho más altas que las de los maremotos corrientes. Se trata de los llamados megamaremotos, término que, si bien no es científico, puede usarse de forma poco rigurosa para referirse a los maremotos generados por causas no tectónicas. De todas estas causas alternativas, la más común es la de los deslizamientos de tierra producidos por erupciones volcánicas explosivas, que pueden hundir islas o montañas enteras en el mar en cuestión de segundos. También existe la posibilidad de desprendimientos naturales tanto en la superficie como debajo de ella. Este tipo de maremotos difieren drásticamente de los maremotos tectónicos.

En primer lugar, la cantidad de energía que interviene. Está el terremoto del océano Índico de 2004, con una energía desarrollada de unos 32.000 MT. Solo una pequeña fracción de ésta se traspasará al maremoto. Por el contrario, un ejemplo clásico de megamaremoto sería la explosión del volcán Krakatoa, cuya erupción generó una energía de 300 MT. Sin embargo, se midió una altitud en las olas de hasta 50 m, muy superior a la de las medidas por los maremotos del océano Índico. La razón de estas diferencias estriba en varios factores. Por una parte, el mayor rendimiento en la generación de las olas por parte de este tipo de fenómenos, menos energéticos pero que transmiten gran parte de su energía al mar. En un seísmo (o sismo), la mayor parte de la energía se invierte en mover las placas. Pero, aun así, la energía de los maremotos tectónicos sigue siendo mucho mayor que la de los megamaremotos. Otra de las causas es el hecho de que un maremoto tectónico distribuye su energía a lo largo de una superficie de agua mucho mayor, mientras que los megamaremotos parten de un suceso muy puntual y localizado. En muchos casos, los megamaremotos también sufren una mayor dispersión geométrica, debido justamente a la extrema localización del fenómeno. Además, suelen producirse en aguas relativamente poco profundas de la plataforma continental. El resultado es una ola con mucha energía en amplitud superficial, pero de poca profundidad y menor velocidad. Este tipo de fenómenos son increíblemente destructivos en las costas cercanas al desastre, pero se diluyen con rapidez. Esa disipación de la energía no sólo se da por una mayor dispersión geométrica, sino también porque no suelen ser olas profundas, lo cual conlleva turbulencias entre la parte que oscila y la que no. Eso comporta que su energía disminuya bastante durante el trayecto.

Un maremoto acercándose a la costa. Un declive menos acentuado hace que las olas de un maremoto pierdan fuerza y altura.

Archivo:Tsunami2.JPG

Un declive con mayor profundidad hace a que las olas de un maremoto sean más altas y potencialmente destructivas.

Archivo:Tsunami1.JPG

Recreación gráfica de un maremoto aproximándose a la costa.

Archivo:Tsunami-kueste.01.vm.jpg

Maremotos en el pasado

Lisboa (1755)

El denominado terremoto de Lisboa de 1755, ocurrido el 1 de noviembre de dicho año,[6] y al que se ha atribuido una magnitud de 9 en la escala de Richter (no comprobada ya que no existían sismógrafos en la época), tuvo su epicentro en la falla Azores-Gibraltar, a 37° de latitud Norte y 10° de longitud Oeste (a 800 km al suroeste de la punta sur de Portugal). Además de destruir Lisboa y hacer temblar el suelo hasta Alemania,[7] el terremoto produjo un gran maremoto que afectó a todas las costas atlánticas. Entre treinta minutos y una hora después de producirse el sismo, olas de entre 6 y 20 metros sobre el puerto de Lisboa y sobre ciudades del suroeste de la península Ibérica mataron a millares de personas y destruyeron poblaciones. Más de un millar de personas perecieron solamente en Ayamonte y otras tantas en Cádiz; numerosas poblaciones en el Algarve resultaron destruidas y las costas de Marruecos y Huelva quedaron gravemente afectadas. Antes de la llegada de las enormes olas, las aguas del estuario del Tajo se retiraron hacia el mar, mostrando mercancías y cascos de barcos olvidados que yacían en el lecho del puerto. Las olas se propagaron, entre otros lugares, hasta las costas de Martinica, Barbados, América del Sur y Finlandia.

Archivo:Lissabon-2.jpg

Océano Índico (2004)

Hasta la fecha, el maremoto más devastador ocurrió el 26 de diciembre de 2004 en el océano Índico, con un número de víctimas directamente atribuidas al maremoto (tsunami) de aproximadamente 230.000 personas. Las zonas más afectadas fueron Indonesia y Tailandia, aunque los efectos destructores alcanzaron zonas situadas a miles de kilómetros: Malasia, Bangladés, India, Sri Lanka, las Maldivas e incluso Somalia, en el este de África. Esto dio lugar a la mayor catástrofe natural ocurrida desde el Krakatoa, en parte debido a la falta de sistemas de alerta temprana en la zona, quizás como consecuencia de la poca frecuencia de este tipo de sucesos en esta región. El terremoto fue de 9,1 grados: el tercero más poderoso tras el terremoto de Alaska (9,2) y de Valdivia (Chile) de 1960 (9,5). En Banda Aceh formó una pared de agua de 20 o 30 m de altura penetrando en la isla 5 o 6 km desde la costa al interior; solo en la isla de Sumatra murieron 228.440 personas o más. Sucesivas olas llegaron a Tailandia, con olas de 15 metros que mataron a 5.388 personas; en la India murieron 10.744 personas y en Sri Lanka, hubo 30.959 víctimas. Este tremendo tsunami fue debido además de a su gran magnitud (9,3),a que el epicentro estuvo solo a 9 km de profundidad, y la rotura de la placa tectónica fue a 1.600 km de longitud (600 km más que en el terremoto de Chile de 1960).

Animación del maremoto de 2004 en Indonesia.

Archivo:2004 Indonesia Tsunami Complete.gif

Japón (2011)

El 11 de marzo de 2011 un terremoto magnitud 9.0 en la escala de Richter golpea Japón.

Tras el sismo se generó una alerta de maremoto (tsunami) para la costa pacífica del Japón y otros países, incluidos Nueva Zelanda, Australia, Rusia, Guam, Filipinas, Indonesia, Papúa Nueva Guinea, Nauru, Hawái, islas Marianas del Norte, Estados Unidos, Taiwán, América Central, México y las costas de América del Sur, especialmente Colombia, Ecuador, Perú y Chile.[16] La alerta de tsunami emitida por el Japón fue la más grave en su escala local de alerta, lo que implica que se esperaba una ola de 10 metros de altura. La agencia de noticias Kyodo informó que un tsunami de 4 m de altura había golpeado la Prefectura de Iwate en el Japón. Se observó un tsunami de 10 metros de altura en el aeropuerto de Sendai, en la prefectura de Miyagi,[17] que quedó inundado, con olas que barrieron coches y edificios a medida que se adentraban en tierra.

Se habrían detectado, horas más tarde, alrededor de 105 réplicas del terremoto, una alerta máxima nuclear y 1.000 veces más radiación de lo que producía el Japón mismo debido a los incendios ocasionados en una planta atómica. Se temió más tarde una posible fuga radiactiva.

Archivo:20110311Houshu.ogg

Diferencias entre maremotos y marejadas

Las marejadas se producen habitualmente por la acción del viento sobre la superficie del agua, sus olas suelen presentar una ritmicidad de 20 segundos, y suelen propagarse unos 150 m tierra adentro, como máximo total, tal y como observamos en los temporales o huracanes. De hecho, la propagación se ve limitada por la distancia, de modo que va perdiendo intensidad al alejarnos del lugar donde el viento la está generando.

Un maremoto, en cambio, presenta un comportamiento opuesto, ya que el brusco movimiento del agua desde la profundidad genera un efecto de «latigazo» hacia la superficie, el cual es capaz de lograr olas de magnitud impensable. Los análisis matemáticos indican que la velocidad es igual a la raíz cuadrada del producto del potencial gravitatorio (9,8 m/s²) por la profundidad. Para tener una idea, tomemos la profundidad habitual del océano Pacífico, que es de 4000 m. Esto daría una ola que podría moverse a unos 200 m/s, o sea, a 700 km/h. Y, como las olas pierden su fuerza en relación inversa a su tamaño, al tener 4000 m puede viajar a miles de kilómetros de distancia sin perder mucha fuerza.






No hay comentarios:

Publicar un comentario